
Columbia's researchers tested a few maximum FOV restriction levels before settling on the box here labeled (e). So long as VR users' views were reduced gradually, most of the testers didn't even notice—and the ones who did said they preferred their sit-down VR experiences that way. (credit: Columbia University)
The launch of the first consumer-focused VR headsets has researchers and 3D content developers focusing on the nausea issues that arise with head-mounted displays. The Oculus Rift and HTC Vive can make users feel immersed and comfortable in their virtual worlds, but that's easier in limited virtual environments, especially ones without movement. What can be done about the pukey feeling brought on by harsher forms of virtual movement, when the brain and the body don't agree on what's happening?
While some people recommend adding a fixed focal point to a VR world, like a cockpit or a peripherally visible nose, a group of Columbia researchers decided to test an idea that was patented years before the current VR boom: a dynamically shifting field of view [FOV]. The system works by recognizing rapid artificial movement during a seated VR experience—like when users press a joystick to rotate their first-person view, or when elevation rapidly changes thanks to objects such as stairs—and then gradually blacking out the peripheral edges of a VR headset's lenses until that upsetting movement dissipates.
In its report, which was published last week alongside a demonstration video (shown below), the Columbia team concluded that "even though we had a relatively small number of participants [24 after removing people who were considered "immune" to virtual motion sickness], our data indicates that FOV restrictors helped participants stay in the virtual environment longer and feel more comfortable than they did in the control condition." Users largely didn't notice the dynamic FOV changes until they were informed well after the study concluded, and the few who did notice reported preferring the limits, since they didn't obscure the primary VR viewpoint. Worth noting, this study's results included unanimous praise from its limited test audience, compared to mixed opinions on the aforementioned VR-nose study.